3,371 research outputs found

    Turbulence, Complexity, and Solar Flares

    Full text link
    The issue of predicting solar flares is one of the most fundamental in physics, addressing issues of plasma physics, high-energy physics, and modelling of complex systems. It also poses societal consequences, with our ever-increasing need for accurate space weather forecasts. Solar flares arise naturally as a competition between an input (flux emergence and rearrangement) in the photosphere and an output (electrical current build up and resistive dissipation) in the corona. Although initially localised, this redistribution affects neighbouring regions and an avalanche occurs resulting in large scale eruptions of plasma, particles, and magnetic field. As flares are powered from the stressed field rooted in the photosphere, a study of the photospheric magnetic complexity can be used to both predict activity and understand the physics of the magnetic field. The magnetic energy spectrum and multifractal spectrum are highlighted as two possible approaches to this.Comment: 2 figure

    On finite-temperature holographic QCD in the Veneziano limit

    Get PDF
    Holographic models in the T=0 universality class of QCD in the limit of large number N_c of colors and N_f massless fermion flavors, but constant ratio x_f=N_f/N_c, are analyzed at finite temperature. The models contain a 5-dimensional metric and two scalars, a dilaton sourcing TrF^2 and a tachyon dual to \bar qq. The phase structure on the T,x_f plane is computed and various 1st order, 2nd order transitions and crossovers with their chiral symmetry properties are identified. For each x_f, the temperature dependence of p/T^4 and the quark-antiquark -condensate is computed. In the simplest case, we find that for x_f up to the critical x_c\sim 4 there is a 1st order transition on which chiral symmetry is broken and the energy density jumps. In the conformal window x_c<x_f<11/2, there is only a continuous crossover between two conformal phases. When approaching x_c from below, x_f\to x_c, temperature scales approach zero as specified by Miransky scaling.Comment: 66 pages, 29 figure

    A search for the presence of magnetic fields in the two Supergiant Fast X-ray Transients IGR J08408-4503 and IGR J11215-5952

    Get PDF
    A significant fraction of high-mass X-ray binaries are supergiant fast X-ray transients (SFXTs). The prime model for the physics governing their X-ray behaviour suggests that the winds of donor OB supergiants are magnetized. To investigate if magnetic fields are indeed present in the optical counterparts of such systems, we acquired low-resolution spectropolarimetric observations of the two optically brightest SFXTs, IGR J08408-4503 and IGR J11215-5952 with the ESO FORS2 instrument during two different observing runs. No field detection at a significance level of 3sigma was achieved for IGR J08408-4503. For IGR J11215-5952, we obtain 3.2sigma and 3.8sigma detections (_hydr = -978+-308G and _hydr = 416+-110G) on two different nights in 2016. These results indicate that the model involving the interaction of a magnetized stellar wind with the neutron star magnetosphere can indeed be considered to characterize the behaviour of SFXTs. We detected long-term spectral variability in IGR J11215-5952, while for IGR J08408-4503 we find an indication of the presence of short-term variability on a time scale of minutes.Comment: 5 pages, 1 table, 7 figures, accepted for publication in MNRA

    Stellar activity as noise in exoplanet detection I. Methods and application to solar-like stars and activity cycles

    Full text link
    The detection of exoplanets using any method is prone to confusion due to the intrinsic variability of the host star. We investigate the effect of cool starspots on the detectability of the exoplanets around solar-like stars using the radial velocity method. For investigating this activity-caused "jitter" we calculate synthetic spectra using radiative transfer, known stellar atomic and molecular lines, different surface spot configurations, and an added planetary signal. Here, the methods are described in detail, tested and compared to previously published studies. The methods are also applied to investigate the activity jitter in old and young solar-like stars, and over a solar-like activity cycles. We find that the mean full jitter amplitude obtained from the spot surfaces mimicking the solar activity varies during the cycle approximately between 1 m/s and 9 m/s. With a realistic observing frequency a Neptune mass planet on a one year orbit can be reliably recovered. On the other hand, the recovery of an Earth mass planet on a similar orbit is not feasible with high significance. The methods developed in this study have a great potential for doing statistical studies of planet detectability, and also for investigating the effect of stellar activity on recovered planetary parameters.Comment: Accepted to MNRA

    Magnetic field geometry and chemical abundance distribution of the He-strong star CPD -57 3509

    Full text link
    The magnetic field of CPD -57 3509 was recently detected in the framework of the BOB (B fields in OB stars) collaboration. We acquired low-resolution spectropolarimetric observations of CPD -57 3509 with FORS2 and high-resolution UVES observations randomly distributed over a few months to search for periodicity, to study the magnetic field geometry, and to determine the surface distribution of silicon and helium. We also obtained supplementary photometric observations at a timeline similar to the spectroscopic and spectropolarimetric observations. A period of 6.36d was detected in the measurements of the mean longitudinal magnetic field. A sinusoidal fit to our measurements allowed us to constrain the magnetic field geometry and estimate the dipole strength in the range of 3.9-4.5kG. Our application of the Doppler imaging technique revealed the presence of He I spots located around the magnetic poles, with a strong concentration at the positive pole and a weaker one around the negative pole. In contrast, high concentration Si III spots are located close to the magnetic equator. Further, our analysis of the spectral variability of CPD -57 3509 on short time scales indicates distinct changes in shape and position of line profiles possibly caused by the presence of beta Cep-like pulsations. A small periodic variability in line with the changes of the magnetic field strength is clearly seen in the photometric data.Comment: 11 pages, 5 tables, 7 figures, accepted for publication in MNRA
    corecore